

Complete Stand-Alone GPS Receiver Solution with MAX2742

A complete GPS solution is achieved with minimal external components, using the MAX2742 integrated CMOS RF front-end GPS receiver.

Introduction

The MAX2742 is a CMOS, single-chip, GPS front-end downconverter. This state-of-the-art device consumes very low power (32mW at 2.4V), and eliminates the need for a costly IF SAW filter or bulky discrete IF bandpass filters. The MAX2742 integrates a low-noise amplifier (LNA), mixer, BPF, automatic-gain-control amplifier (AGC), local oscillator synthesizer, clock buffer, and internal digital sampler.

This device can interface with many commercially available GPS baseband ICs. It is suitable for many applications, including vehicle navigation, telematics, automatic security, asset tracking, location-based service (LBS), and consumer electronics. The external components required around the device are minimal for a complete GPS RF solution. The system block diagram can be found in the following section.

The MAX2742 works with an 18.414MHz* crystal or TXCO, and offers differential or single-ended** IF output at 1.023MHz. Total signal conversion gain is 120dB, with a noise figure of 4.5dB. The IF signal is sampled at the reference clock rate of 18.414MHz.

For more details, please refer to the MAX2742 data sheet.

* Note: 18.414MHz is 18 times 1.023MHz, which is one-tenth of the GPS fundamental frequency 10.23MHz. ** Note: There are three IF output pins—one pair of differential outputs and one single-ended output. Selection is controlled by pin 10.

Complete GPS RF Front-End Solution

Figure 1 shows the important building blocks and features of Maxim's complete GPS RF solution. Description of the building blocks can be found in **Table 1**; cascaded performances are shown in **Table 2**. **Figure 2** shows the application circuit of the GPS receiver RF portion with the MAX2742.

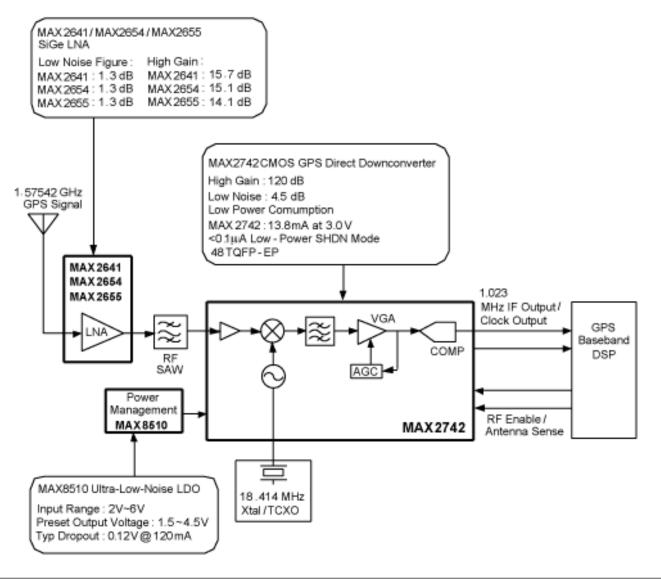
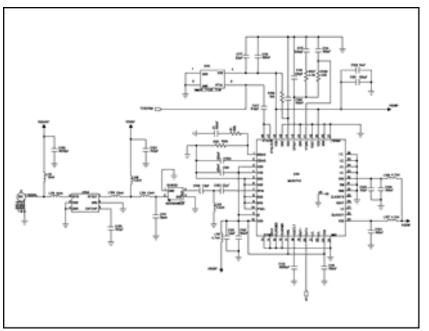


Figure 1. GPS RF front-end block diagram

Table 1. RF Portion System Building Block


Block	Description	Note
GPS antenna	Active GPS antenna, commonly has ~1.5dB NF and ~20dB gain	
LNA	MAX2641/MAX2654/MAX2655 LNA	External LNA is required when active GPS antenna may not be present.
RF SAW	RF bandpass filter centered at 1575.42MHz	RF BPF is required for jammer immunity
Power management	MAX8510 low-noise LDO	

RF downconverter	MAX2742	
Reference clock	18.414MHz crystal/TCXO	
DSP	Baseband processor	

Table 2. System Cascaded Performance

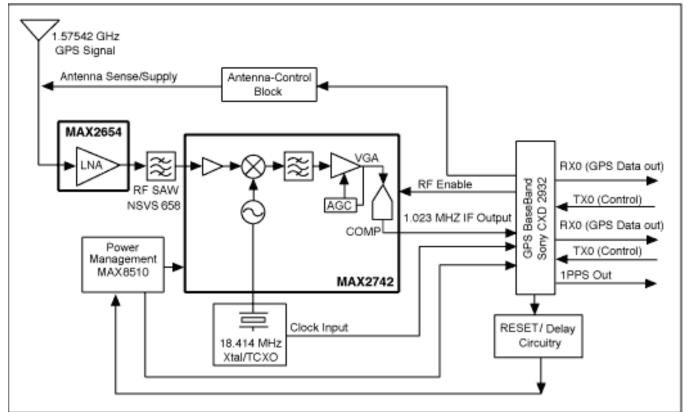
Specification	Cascaded Performance	Note
Gain	131dB	Without active antenna, assuming 15dB external LNA gain, 3dB BPF loss, and 1dB matching network loss
Noise Figure	1.9dB	Without active antenna, assuming 1.5dB external LNA NF
Power Consumption	20mA	MAX2744+MAX2654 as an example

Power Consumption 20mA

For Larger Image Figure 2. GPS RF portion schematic for MAX2742

Complete Stand-Alone GPS Receiver Solution

There are more building blocks to construct a complete GPS receiver, other than just the RF plus baseband IC. As shown in Figure 3, an extra antenna supply-control block, a RESET circuit, and a delay circuit are needed. Description of the building blocks can be found in Table 3; cascaded performances are shown in Table 4.



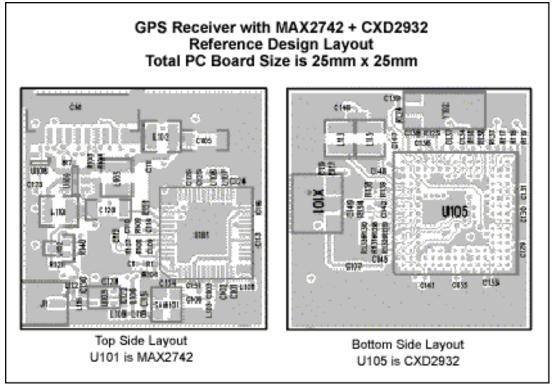

Figure 3. Complete GPS receiver solution block diagram

Table 3. System Building Block

Block	Description	Note		
GPS Antenna	GPS antenna	Refer to the RF portion for details.		
LNA	MAX2654 LNA	Refer to the RF portion for details.		
RF SAW	RF bandpass	Refer to the RF portion for details.		
Power management	MAX8510 low-noise LDO			
RF downconverter	MAX2742			
Reference clock	18.414MHz TCXO	The TCXO also supplies the baseband clock. In this reference design, GPS clock output from the MAX2742 is not used.		
GPS baseband	Sony CXD2932	The CXD2932 also controls active antenna supply, RESET function. See details below.		
Antenna control block	Antenna supply control with p- MOSFET and current-sense resistor	The sense resistor feeds the antenna supply information back to CXD2932. There are three possible conditions: normal, short, and open.		

RESET/delay circuitry	Different levels of RESET, and delay circuit required by CXD2932	To ensure successful startup, CXD2932 requires two RESET signals 100ms apart.		
	TX: external control command			
Baseband interface	RX: GPS data out	Data-rate programmable		
	1PPS: one pulse-per-second signal	This signal is aligned with GPS atomic clock.		

Figure 4 shows the real PCB layout of the reference design. The complete solution only occupies 25mm x 25mm of PC board space.

For Larger Image Figure 4. GPS Receiver PCB Layout

Table 4. Module Performance (LNA + MAX2742 + SONY CXD2932)

No.	Parameter	Symbol	Conditions	System Specifications	Maxim Target	Measured	Units
1	Power supply	V _{CC}	(Note 1)	2.7 ~ 3.6		T.C.	V
2	Current consumption	I _{CC}	$V_{CC} = 3.0V$		91	88	mA
3.1	Sensitivity	Sens	Acquisition	Tracking	-145	-145	dBm
3.2	Censitivity	Oens			-138	-138	ubm
4		TFC	Cold start		58 (typ)	60 (max)	S

5	TTFF	TFW	Warm start	45	30 (max)	S
6		TFH	Hot start	17	6 (max)	S
7	Position drift range	PR	95% possibility	100	90	ft
8	1PPS output accuracy	1PPS		1	N.M.	ns

Note 1: T.C. = test condition, N.M. = not measured

More Information

MAX2641: QuickView Full (PDF) Data Sheet Free Samples
MAX2654: QuickView Full (PDF) Data Sheet Free Samples
MAX2655: QuickView Full (PDF) Data Sheet Free Samples
MAX2742: QuickView Full (PDF) Data Sheet Free Samples

MAX8510: QuickView -- Full (PDF) Data Sheet -- Free Samples